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DERIVATION OF THE BOLTZMANN EQUATION AS
A TEST CASE OF KINETIC-THEORETICAL SCHEMES *
by
Toyoki Koga**
Polytechnic Institute of Brooklyn, Graduate Center

Farmingdale, New York
SUMMARY

The derivation of the Boltzmann equation from the
Liouville equation can be a means of testing the feasibility
of a kinetic-theroetical scheme, since the Boltzmann
equation is known as empirically plausible. From this
viewpoint , we investigate kinetic-theoretical schemes deriving
the Boltzmann equatioﬁ. We may derive the Boltzmann equation
consistently by considering the Liouville equation to govern the
distribution of a system in the phase space which is not symmetric
in the microscopic sense. On the other hand, we cannot derive the
equation consistently on the assumption of symmetry of the
distribution; the Boltzmann collision integral is not compatible with

the symmetry assumption.

This research was supported under Contract Nonr 839(38) for
PROJECT DEFENDER, and the Advanced Research Projects
Agency under Order No. 529 through the Office of Naval Research.

b Visiting Professor; currently on professional staff of TRW Systems,
Inc., Redondo Beach, California.



I. INTRODUCTION

By examining usual procedures of the derivation of
the Boltzmann equation from the Liouville equation, we
find inconsgistencies in the procedures. The main purposes
of this paper sre: 1) to point out a common defect in the
functions of modern kinetic-theoretical schemcs by
analyzing these inconaistencies and ) to att:mpt eliminating
the inconsistencies; the attempt is the one to rationalize kinetic
theory itself,

The Boltzmann equation is a product of intuitive but

ingeniaus thoughts of Maxwell and Boltzmann.’

In spite of
the intuitiveness involved in the original derivation, the
feasibility of the equation has been tested and confirmed

in many ways ¥ ; the equation is to be appreciated as a basic,
if empirical, law by itself. Therefore, as a means of proving
the feasibility of the Boltzmann equation itsclf, it is of no
significance to show a radical derivation of the equation from

the Liouville equation. On the contrary, it is more likely to

be a proof of the feasibility of a kiiietic-theoretical scheme that

.the scheme is able to derive consistently the Boltzmann equation

from the Liouville equation. In other words, the derivation of

¥ It is well-known that the equation was proposed by Boltzmann

in 187¢. We may see, however, that Maxwell's equations of trans-
fer proposed in 1866 would have stimulated Boltzmann to conceive
the equation. See The Scientific Papers of James Clark Maxwell
(Dover,N.Y.), Vol. 1I, p. 2b. ‘

. S. Chapman and T.G. Cowling, The Mathematical Theory of Non-
Uniform Gases (Cambridge Unive!mmmsm
For example, by assuming a proper law of interaction force between
molecules constituting a gas, we may -:alculate the viscosity co-
efficient and heat conduction of the gas accozding to the Boltamann

equation.
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the Boltzmann equation under certain conditions can be a

trial of the feasibility of kinetic-theoretical scheme. (Of
course, there may be a benefit that such a derivation shows
us more explicity conditions which limit the validity of the
Boltzmann equation. )

There have been attempts made by several authors to
derive the Boltzmann equation from the Liouville equation. *
In spite of their radical intention, however, the attempts Go
not seem suo..ssful; For conceiving properly the Boltzmann
equation, it is necessary to make the concept of molar disorder
and that of molecular order as compatible. The compatibility
of these two conflicting concepts of states of particles in the
Boltzmann equation was made possible ingeniously by Boltzmann
and Maxwell by means of the Stosszahlansatz. On the other
hand, by a purely kinetic-theoretical approach, the compatibility
tends to be made possible only on the destruction of consistency
of the analyses. The common failure of known kinetic -theoretical
schemes deriving the Boltzmann equation is found at this point.
Then, changing our viewpoint, the very failure suggests to us that
there exists a basic and common defect ir the structures of these

kinetic-theoretical s;chemes. That is the assumption of the

*See section 4.
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microscopic symmetry of the distribution of a system in the phase
lpace*. Based on this astumption, modern kinetic-theoretical
schemes are not well-equipped with machinery by which it is
possible to treat molar disorder and molecular order 23
compatible.

In section 2, basic concepts and definitions necessary
for the dervation are introduced. It is stressed that the
distribution of a system in the phase space is not symmetric
in the microscopic sense. In section 3, it is shown that coarse-
g-aining operations with respect to time and also with respect
to similar particles are necessary for deriving the Boltzmann
equativn; the compatibility between molar disorder and moiecular
order is assured b the difference between the macroscopic and
microscopic time scéles. In comparison with the derivation
given in section 3, we identify the common difficulty and its
causcs in kr.own derivations by taking the Kirkwood-Ross
derivation and the Bogoliubov derivation for examples in
section 4, We also evaluate the derivation proposed by Grad

which is rather anomalous,

*”
The distribution is not symmetric in the microscopic sense.
T. Koga, "Reply to Comments of P, Schram, Phys. Fluids,

6, 455 (1963); "A Kinetic Theoretical Investigation of a Fully
lonized Gas', Partl, PIBAL Report No. 863, January 1965.
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II. PREPARATORY DEFINITIONS AND TREATMENTS

The Liouville equation governing the evoiution of
the distribution of a system consisting of N similar particles

(m:2%erial points) is

q A .
(5 "-‘"1-—”:—-'51—“»:3;?;»') oM - o (2. 1)
i= i
with

S o N ~

Forw Fy oLy A Syymo (2.2)

i 1'=-1 IR
j J J J

Here D(N) is the distribution function of the gsystem in the

phage space, t is time; m 1is the mass of a particle; P, is

an indep2ndent variable representing a point in the momentum
space for particle i; r, is an independent variable representing
a point 1n the position-vector space for particle i; 3: is

the total force exerted on particle i; ";ij is the force exerted
on particle i by particle j. It is assumed that there is no
external force exerted on the system. Since we are investigating
a single system, D(N) is to be given by

pMN) . N 5, - X[(t) (2.3)
i=1




L 2

where Xi is a six-dimensional _:tor standing for p, and r,

and x:(t) constitites a set of solutions of the equations of
mot‘on of the N particles. It is noted that D(N) is not
symmetric with respect to the interchange of coordinates

*
between any two particles :

™)
DMKy K X X

#D(N)(Xl.....xj.....Xi.....XN) (2. 4)

Distribution functions of subsystems are defined as follows:

Fi“’(xi;t) =v] o™, ax. (2. 5)
Jti

where

de = dn,_ dp. dp.

dr, dr, dr,
)X )y ")z

X Jy )z

and V is the volume of a domain of the configuration space in
which the system is known to exist throughout the entire period

of time of our investigation; the domain may be chosen arbitrarily
as long as it is sufficiently large that the system or its part will

not run off the domain. Once it is chosen, however, the domai=

See footnote on page 4.
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should not be changed during our investigation. Further we define
Fij(z)(xi;xj;t) - v2 D(Nl)(ﬂ# L dX , ifi2 j (2. 6)
=0 ifi=}) (2. 6)'
and so forth., It is no.2d that the order of subscripts attachud to
F(Z) is the same as the order of t' e same set of subscripte at-
tached to the X's in F(Z). This accordance of the .rders means
that there has been no interchange of coordinates among particles.

According to the definition, it holds that

(2) iy = (2) .
F i (xj. Xit)= Fij (X, xj. t) (2. 7)
and
(2) . (2) . 2 2y
Fji (X, xj. t) # Fij (X, xj. t) (2. 7)

in view of (2. 4).
By irtegrating Eq. (2. 1), term by term, with respect to
the coordinates of all the particles except for particle i, we obtain*

P.
(5 + = "21) AR

(continued on next page)

*

Because of the finiteness of V and of the energy of the system,
it holds that

3 pM) - ° N), . -

) (2)
F, . F X.=0
Jesi s e ox

This term is retained in equation (2. 8) for the convenience of the
further treatment of the equation,

Therefore

ks 1




N
1 0 d ' d (2)
+ Z ¢ @ Sont——Se— + J-- .—_) F-o (x.l x~;t)dx.=0
Va1 J(}'ij AD; ) N B S R
é
(2. 8) ;
If the integration is mace with respect to all the particles except
for particle i and partizle, j, we obtain
P, P. ~ ~
) i d ot I d (2)
(5 + = 57, + = 'Brj + J”_ap + ji.-5-—p-] )Fu (X, x it)
1. 0} (3) . ]
f B G st e s B X X0 ax <o
(&o 9)
. :
We may increase the number of particles of exception so that :
the equations of evolu’i .n of F(s) and others are derived successively,
By making averages with respect to particles, we define
. ) X_ + AX
Fix ;1) 2x = ] ? Y aF(l) (X,3t)X, (. 10)
AN €
=1 °X,
i
X+ Xy
(2) i (2) :
r-' . :
(X » Xpit) A X, = T ,, . Fij (Xi. Xj.t) dxj (2. 11)

b




TN,

- ————

xa+[\X

F“’(x Xt b X TR L | F(z)(x X0 t) 4,
i o)
X
a
(2. 12)
P X0 8 X0,
: .Xa+ Axa .Xb+([3£))(b
S — T J | Fi' (Xi, X.;t) dXidX.
Noij UXx, Ty M ) )
(2. 13)

Functions of Xi and/or Xj are discontinuov: functions as shown

by (2.3), but functions of Xa and/or Xb may be continuous as

the number deneity of pacticles increases. 1In the above, it is

worthwhile to recall that Xi. Xj. etc. are independent variables.

Defined by

f(c, rit)drdp/m* =N F ) (p, rit)ardp (2. 14)

¢ =p/m, dr=drxdrydrz. etc.

f is the number dsnsity of the particles specified with velocity

c and position vector r at time t.

It is

often assumed that f defined by (2.14) is the very

function which evolves according to the Boltzmann equation, We

note,however,

that there is a difference between f and the function




to be governed by the Boltzmann equation as is e: .lained in

the following. The Boltzmann equation is postuleted by

(: + c.-g—r-) f' (c, r;t)

= j [ (ch, r; 1) £14', ms5t) - £ (e, Tit)]

|e,- c| df hdhdc, (2. 15)

According to the definition of the Boltzmann equation, ¢, c,,c’ and
c', must be velocities of particles only in free flight; therefore

' should be defined so that f' gives the number density of such
particles only. Angle T and length h are variables specifying

the geometrical relation of a collision between two particles which
begins with initial (asymptotic) velocities c and ¢ of the

two particles, as are illustrated in Fig. 2.1; c' and c', are the
final (asymptotic) velocities of the two particles after the collision,
In Eq. (2.15), ¢, ¢,, and hare independent variables; in accordance
with the equations of motion of two particles, a collision may
begin either with ¢ and c, or with c' and c¢', and ends, respectively
either with c' and c', . By the Boltzmann equation, the evolution

of f' is due to the effects of many collisions acccunted for in such a

manner that the effect of each collision is the integral of the

10
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relevant differential effect over the entiie phase of the collision.
On the other hand, the evolution of Fi(l) according to Eq. (2.8)

is due to the effects of collisions accounted for at given Xi

which may be a state of particle i during a collision as well

as during a free flight. See the schematic comparison given in
Fig. 2.2. Therefore f defined by (2.14), which counts in nct only
the number density of pai-icles in free flight but also that of
particles during their collisions,is not the very distribution
function to be governed by the Boltzmann equation, However,

if the portion of a unit time during which a particle is in interaction
with others is much smaller than the other portion during which
the particle is in free flight, we may eliminate small and sudden
fluctuations in f due to rnarticles in ccllisions, by making anaverage

of f over a time period fromttot + .,

drT f(c, r(s); t + s)ds (2. 16)

(o}

4|.—|

<f>0 =
where

dr(s)

= = r{0)=r

If + and r(r)-r are negligibly small in the macroscopic sense

11
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and yet large in the microscopic sense, <f>, defined akove is
equivalent to f in the macroscopic sense. Ir the microscopic
sense, <£>0. unlike f itself, i a smooth function of t presenting
only the density of pzrticles in free flight. Therefore it is
more plausible to take <f>0. instead of f, for the distribution

function f' to be governed by the Boltzmann equation (2. 15) |

' e .
f' = f 0 (2.17)
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III. DERIVATION OF THE BOLTZMANN EQUATION

First, we assume that the significant interactions among
particles are always binary. In other words, if \’Fij is
significant, then J ik and /or jjk are negliygible. According

to this assumption, the integral term in Eq. (2.9) vanishes:

p- /'v
/A i b J ' 3 (2)
o v 'ari Ve O j +'3;_) Ap BP )FJ (X X it)
=0
(3.1)

Secondly, we assum.e that the scale 7, of gas dynamical processes
in the system is much longer than the time scale 7, of inter-

particle interaction:

T, >> 1,
During the time period from t to t +s, we consider fictitious

trajectories of particle i which satisfy

dri(s) P,
- ri(s) =r, +4r i(s)
(3.2)
dp, . .
oo E 0 (Trajectories 0)

13
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with initial conditions

r (0) = T (3.3)
Here T ard P, are independent variables, but ri(s) is a
function of time s. These fictious trajectories are named

trajectories 0. Taking 1 so that

Ty D> T D>, (3.4)
we make the average of each term of Eq. (2. 8) alorng the

trajectories 0 over s from 0 tor. On consideration of

-;.j— Fi“)(pi. ri(a);t) =-;T Fi“)(pi’ ri(s);t + 8) 1
i
: . i
P P.
= 'avl M prtent40) = b ‘airi'ﬁ) F M, . (s);t+0)

we may see that

. T
-] [

~

Py

3 (1) .
5T ) Fi (Xi. t)] ds
tdtes

¥lo
3

14
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A '

S S U (M .
) ,‘, (as * m ’ari(,)) Fi (Pi- ri(S).t+ s) ds

P.
_ ;.0 i 3 (1)« .
- "ET + m O ari) < Fi (Xi.t) >o
where
31 VPR SR U § § IR
<Fi (Xi.t)>o- -T—-J o F‘1 (pl l‘i(S), t+ a)ds

By coarse-graining Eq. (2.8) in the above sense, we obtain

P:
A i A e (D . -
(_a'f" +,r_n.....a_ri_) < FUXGt)> 0+ <Ji>0 =0
where
N n 3 (2)
A el x x dx
Ji JEI .](le 3;‘ APJ- ) E ( Z )

(3.5)

(3.6)

(3.7)

?
-1 2. (2)
<Ji>o ) TV f j:l ‘fijani jjiopj)F (xi'xj't)J dx ds

0
totes

15
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For deriving the Boltzmann collision integral firom (3. 8),
we consider the following three points which are commonly
essential in statistical investigation:

1. In (3,8), the summation with respect to j is made first

and then the result is averaged with respect to s. In order to

make the time average separately with respect to each of particles
j,» it is necessary either to choose T sufficiently short that particle
{ interacts with particles j once, at most, during the time between
tand t + T, or to assume that the interactions are very weak.
(Suppose that there are two strong collisions of particle i during
the period between t and t + T. The effect of one collision when
it occurs first is different from the effect of the same collision
when it is assume d to occur second. Note that Xi is an independent
variable and is the same in the two cases, but Fi“) in the first case
is differeat from Fi(l) in the second.) The necessity of the above
condition will be discussed again with respect to (3. 22).

2. Since we are observing < Fi(l)(xi;tb , 1=1,2,3,. ‘o)
it is impossible and also unnecessary for us to know the precise
time when the precise state with which a particular particle j

begins tc interact significantly with particle i, Thus we may

16
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se! the same assumption as the Stosszahlansatz by Boltzmann

with respect to the sate with which particle j begins to interact
significantly with particle i during the time between tand t + T:
Particle j is one of the particles which are located near particle

i at time t,, and among which D(N) may be assumed to be symmetric.

If we take Arb for the domain of the configuration space in which

such particles j exist, definition 2,11 leads to;

= »(2)
(" //I- ib'-!;-i- Fig X i.xb;tg dx, ds

tats+s
(3.8) *

Note that the domain of the integration with respect to drb is

limited by Ar, in accordance with the definition of F. ") which

r2)
1

is continuous unlike Further, on coarse-graining with

respect to i in accordance with (2. 13), we have

<J>O = i-I/[[‘ﬁab -3- (2)()( .Xb.t)] dx ds (3. 8)"

t?2t+s

On consideration of the above, Eq. (3. 7) yields

3, Pa (1) -
(3¢ +—T) < FUAX it)> +<J>0 =0 (3.7

17
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3. The result of the coarse-grainirg must be independent of 7,
Otherwise, the result has no definite physical meaning. The
situation depends on the distribution of particles in A Ty and 7.

If the distribution is uniform, the result is perfect. As the
density of a gas becomes more rarsfied and the distribution of
particles in Arb and T becomes more non-unifomm, the result tends
to depend on T. Then the [ ossibility of kinetic theory diminishes.

Instead of <Ji> y We may make <Ji‘> by coarse-graining J

0 I i
over time from t to t + T along trajectories I which satiusfy

dri(e)  ps)  dp,(s)
5 = A

n
-

ds m ds =
' (3. 9)
dr.(s) .o dp.As)
= L = _f (s)
ds m ' ds ji

{Trajectories 1)

with initial conditiors

ri(o) = ri' pi(o) e

- (3. 10)
B0 v+ P;(0) = p,

Thus we obtain
dp (s) dp.(s) o
\1)1"“[2[ api ‘HL'S';S;TT)

F}iexi(s).xj(s);t+e)dxjds

(2. 11)
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Equations (3. 9) constitute the characteristic equations of
Eq. (3. l),if 3/dt is replaced with 3/3 and t with t + s.
Therefore, by integrating Eq. (3. 1) along trajectories I given

by (3.9), we obtain

] d (&. .
= Fij ! (X, (s), Xj(s), t + s) ds

. l F(.2) . lr _
ij (Xi(s), Xj(s). t+ s) o ° 0 (3.12)
where
a _ s, drye) 3 dr, (s)
ds 38 ds : ms) ds . arj(s)

Niar radi Bpi(s) 3 '3pj(s)

By making the average of <Ji> 1 with respect to particles in the

same way &8 is shown by (2. 13), we obtair

:
Ala dp,(s) dpb(s) 3

- _ N
‘<J>I = v JOJM (5 'apa(s)+ ds " Tp,ls)
b

———— e e - -

F(Z)(Xa(s), Xb(s), t+ 8) de ds

(3. 14)

19
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where Ar

b

d
' » . .
(3.8)!'. On definition of ['Hs_] ab Y

9 -
+ ab(ﬂ) -'a—p-;-s) + ‘j'ba(S) «

relation (3. 14) yields

Unlike (3. 12)

d
A T,

fo ([

. Pb(s) 3

The reason is that

F

a

)
b'a-p: ¥

Bxxm ¢

20

“ds

n. 'ﬁ;(s)

3

d_,

a

~
4 3
Yab * Spa

is of the same impliczation as stated with respect to

—

g e r O

Py (8)

(3. 15)

) Pa(s) d

b'?'s‘_"m—' Sc(s)

— e M —— gy

) wENK (s), X (s); t + )

dxb ds

(3. 16)

(2)
F  in the above integrand does not vanish.

S —————————

F (2)(’(4’%;‘)

etc.

J—
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A Xa and 4 Xb considered in (2. 13) cover domains of the
configuration space which are larger than the domain of the
force field induced by a single particle; hence only a few of all
the particles among two groups of particles, one group in states
between Xa. and Xa + L xa and the other in states between Xb
and Xb + A xb' are really participating in binary collisions

of the mode specified by (3. 13); many of them are in collisions
of different modes and/or in free flight. Hence we may write

for (3. 16)

[ F(‘)(xa(T b X (it +7)
b

<J> = —-vN ’
- J
1 T Ar

- F"')(xa. X, :t)] dX,,

g oo y  dral® dry(s) 5 |
- ‘|°J°"b (5 + ds 'ara(s)+ Js ‘arst))

F"‘)(xa(s). X, (s); t + 5) dX, ds

(3. 17)

It will be show that the first integral in the above yields the

Boltzmann collision integral while the second integral is insignificant

21
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if the number density particle is as low as usual.

Particles in state X, may interact with particles in

b

state Xa during the period of time between t a~d t + T orly if
Ty at time t is chiusen in the domain of che configuration space

between r'b and ry respectively defined by

(x'y-r) o (Py-p,)=0

' - Tal s By - Py

I%-%pm (3. 18)

as is illustrated in Fig. 3.1. Hence, by presenting 2% with
a cvlindrical coordianate system with the origin at r, and the

altitude in the direction of P, - P,» We have

" lpb' pal »
Arb=J drbi- T———F—J dmhdh

(3. 19)

Here o stands for the direction angle and h the radius in the
plane of zero altitude. We also assume that, before and after
a collision between two particles, the correlation between the two

particles is weak so that

22




I

Fm(xa. Xgt) = Fm(xa;t) Fm(xb;t)

Fm(xam. X (1)it+7) = F(U(Xa(w); £+ 7) Fm(xb(T); tFT)

(3.20)
On consideration of (3. 19), the second member in the right-hand

side of (3. 17) is of the order of

N ~3d TP Qd TN 9 2)
a——— ((— b oEmEEEm. ¢ eEmn 4 oasereEms ¢ USRS ) F (x x ;t)
TV ot m ar moodr, "o
~ Ipb.'pal
i dp, = d¢ h dh
) Ndrb : ¢ P, P ) les(x .
= 3T o == ‘dr a,t)
v a
. (3'21)

where A ry is given by (3. 19) and is the volurue of the configuration -
space domain in which we find at t such pa: ticles as to interact

with particles of state xa in the future betweentandt+ 7. It

is reasonable;'. therefore, to assume that

. 16,
o[ jdphdh). =0 =5x10" " cm

2 . o o N
where ¢° is the order of cross section or o is the maximum distance

between two particles within which their interaction is significant

*The assumption is reasonable only for neutral molecules. See
for example, J.H. Jeans, The Dynamical Theory of Gases (Dover,
N.Y.), fourth edition. p. ¢81.

23
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and that |
-1/3 . ] .
(N/V) <« 0[1 (pb - pa)/m] «mean free path length = o PeT— %
2% 2N/V i

By choosing 7 as in the abuve, we have

N 23 Nar 1
Pl = < A = 0.2 (3. 22)
m

21 2/3 2
ILN/V =10 , then o°(N/V)°/ - = 5x10"°, Under this condition,

it appears barely possible to choose 7' so that (3.22) is

2b  ihen g2/ = 5, and

satisfied. If N/V =10
(3;22) does not kold rezardless of ¢ . It in noted thet
condition NArb/V <<1 is the very condition that 7 is
short so that particle i interacts with other particles

once at most durinz the time period between t and t « ? .

Note the stitements which follew (3.8). Under condition (3.22),
the term miven by (3.21) is ne<ligibly small as compared witn

the first two terms of Eq.(3.7). Thus, with the help of

(3.19) and (3.20), Eq.(3.17) yields

Tyy =- -%'-f[ FO ( (@)hr, (Dt ) F (o (Dyr, @5t

- F(l)(pa.ra;t) F(D(pb.rb;‘) J

o Pl yg nanas,

*
See J.H. Jeans, The Dynamical Theory of Gases
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If we consider that T, ra(?)-ra and rb(a\-rb are of microscopic

ecales and hence

PV 0 @it ) = FP, i)

etc,

—

in the time scale of ( 1+ We finally nave

(Dpn- f[@l’w. 2o PG @y,

- <F(l)(pa.ra;t)>o <F(l)(pb.ra=t)>o ]

P, -P
LB._E.Ld'fndhdpb
m

(3.25)

Since <Ji>0. and <Ji> p are made by averaging

resvectively along trajectories O and trajectories I, these
two averages are not mutually equivalent. 1In the following,

however, it will be shown that

e ——————

L RT) TIPS CRTI (3.26)

after their being coarse~grained with respect to :articles
in the same way as is suown by (2.13): Jg is a function
of Xi and t, and exists along a line namad Ji in the Xit-
space as is shown schematically in A c¢f Fig.3.2. By the

assumption o. binary collision, line Ji coincides with
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one of th: trajectories I. Since we ara dealing with a
sinzle system, Ji vanishes unless particle i is in

—~
interaction with particle j so tnat uﬂij is significant.

Almost straight lines in the same {lilustration are

b . ”.
trajectories O In B of Fig.3.2, Ji' \Ji >0 and (Ji> I

are shown at time t. Ji apoears as presented vy
J-function; <Ji>I also appears as if J-function.
since Ji exists only on one of the traje~tories I.

On the other hand, \'Ji >O made by averaging J,

along trajectories 0 is shown as if an error function.

Obviously

\'Ji>o # <'Ji> : (3.27)

It is obvious, however, that

j(&i(xi;t)>odxi = f<Ji(Xi;t)>I dx, (3.28)

This is because both are the same total intensity of
Ji from t to t + C divided by C . If the rumber of

particles wuich exist in states between Xa and )(a + A Xa

is sufrficiently large, we may assume
S E———— ———"-
. <J(xa;t)>o = <J()(m;t:)>I (3.26)
where, of course,
X +AX
a a

<J(xa;t)>o W:T‘ 2: <Ji(xi;t)>o ax,  (3.29)
- :
X

a

26




Xa+4Xa

<T(Xa;t)>1 = ﬁ%g; 2'1 <Ji(xi;t)>1 X, (5.30)
X
a

Needless to say, conditicn (3.28) is compatible with

(3.2€6)s According to the above, Eq.(3.7)' yields

P ST T T AP MM 100 T T TN T PTY S ARI at0L mmmmmmm

I T (W&Iﬂ)u +{I Py =0

()t m c)ra

(3.31)

uatiuttlio e du Gl

In order to reduce Eg.(3.31) to Eq.(2.15), it is

necessry to replace < F(l>
y 0 with f' in accordance with

(9.].’4) and (2016):

f'(cyr;ty = N m3<:F(l)(p.r;t)>O (3.32)
¢ = p/m (3.33)

It may be a trivial matter that we takc off subscrint a,

replace subscript b with 1, and write mc' and mci

T O T R P T TR TR P e

respectively for pa([) and pDOZ) for completing the
reduction.

Finally, the escential points in the above derivation

are surmarized as follows:
l, We may take some other class of trajectories in

place of tisjectories O, as long as tuey are equivalent

27
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*
in time scale ¢ 1*

2. Also, trajectories I may be replaced with
trajectories II, etc, , if these clas :es are equivalent
in time scale 2’2.

3. Xi ic an independent variable, and Fil)(xi;t) ' |
is a discontinuous function to be presented by J'-function.

But Ftl!(xa;t) is a continuous function, if N/V and

4 Xa are sufficiently large, The situation is
)
similar with respect to Fis)(xi.xj;t). etc.

4, Althouzh

-

—;E Ffi)(xi 3),X.(s)jtes) = O

in (3.12), yet

" R —

[H:"]ab' F('{)(xa(S),xb(s);“a) £ O
in (3.15). |

S« The domain of interration Jf‘drb considered
in (3.19) is finite in the direction of Py,-P,+ This

i8 neces—:ary, after replacing F(Z)(xj.xj;t) with
ij

(2) .
F E (xa,xb t), for taking into account the fact that

.
]

a particle with ite finite velocity is localized in a %

narrow domain of the configuration space during; a short

28
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period of time i?. Note that Fé?’(xi.xj;t) is

discontinuously localized by itself, but that

F(a)(xa,xb;t) is a continuous function. If D(N)

were symmetric in the microsccpic sense, the above

limitation of the integration with respect to dbb

would not be justified., Then tne value of the

collision interral would always be inderinitely large.
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IV, DIFFICULTIES IN USUAL DERIVATIONS

There have been differ:nt derivations published
by several authors. As typical examples, the derivations
by Kirkwood and Ross, by Bogoliubov, and by Grad are
investigated in the following. Because of the assumption

(N)

of symmetry of D considered in the microscopic sense,

these derivations involve common difficulties.

4,1, Derivation by Kirkwood and Ross*

1, Being coarse-grained with resp:ct to time,

EqQ. (2.8) yields

DA (1)
Gp + =5 dr)(r (x.ﬂ)

T .90 LT 9 w2,
21 J‘OFJ':UJ?I + 3 ()p )F iJ (zi,x ,t+s)dx ds

(4.1)
where
<
1), . _ 1 ), .
<:Fi (Xi.t):>K = ?F- Fi (Xi.tos)da (4.2)

By assuming that the distribution is symmetric, we may replace

*J. Kirkwood and J, Ross, The Statistical Mechanical Basis of the

Boltzmann Equation, in Proceedings of the International Symposium
in Statistical Mechanics, Brussels, 1965, edited by 1. Prigogine
(Interscience Publishers, Inc., New York, 1958.
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(1) . (1) .
Fi (xi,t) with F (xl,t)

(2) . . (2),, .
Fij (xi.xj.t) with F (Al.xa.t) (4.3)
Zj with N
The next procedure is to define K(z) by
F(Z)(Xl.xzat+s) - x(Z)(xl,xz/xi.xé;s) F(Z)(Xi,X'aat)dXi ax
(4.4}
Since k(2

is ziveu explicitly by
2 .
K( )(xl.xa/Xi.Xéas) = &XI-Xi-d Xl(u)) J(XZ-Xé -sz(s))

(4.5)

it is easily shown that

P x xyitre) = FEIx - a % (8) )X, -4 X, (0)58)

(4.6)
Accordinz to Kirkwood and Ross, zlxl(s). standing ford pl(s)

and 4 rl(a), and sz(s). standing for 4 pz(s) and 4 rz(s),

are the chances in momenta and space coordinates of particle 1

and particle 2 determined by solving the equations of motion

of the two particles in accordance with the as umption of
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binary collision:

dArl(u) P, +Apl(s)

d s n n

4 o (b.7)
Apl ] ~

--3-5-- S, ()

and

similar equaticns for particle 2,

Under this circumstance, they claim that F‘a) given oy (4.6)

is a solution of Eq.(3.1) where O/Jt is replaced with J/ds:

)

( a \pl a l'2

.1 J * m 'arl

J - 0 ~ 9 (2
rwoan Py S0

rn

(4.8)
Rere s, pl. P. rl and r2 are to be independent variables.
It is obyioue, however, that F(a) kiven by (4.6) under
con'ition (4.7) does not sa:isfy Eq.(4.8). 1Instead,

i¢ is obvious that F(a) satisfies Eq.(4.8), if < X. (s)

aund sz(a) are solutions of

ddr,(s) B d‘Pl(")

- »:——. et =j12 (“.9)
des m ds

etc.

N
ia rlace of (4,7). Note that Pr Py Ty and r, are

independant of s in (4.9), snd hence tie equations are
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not the equations of motion of the two particles. Only

when A Xl(a) and <3x2(a) are extremely small, Egs.(4.9)
coincide with Eqs.(4.,7). It is roted that the particular
solution of Eq.(4.8) integrated along trajectories determined

by E¢s.(4.7) is considered in (3.12).

2. Although Axl(a) and a XZ‘a) satiefying Egqs.(4.9)
are not the proper trajectories of the two particles in
interaction, such as expected to be by the authors, yet
F(a) given by (4.6) is a correct solution of Eq.(4.8)
under condition (4.9). Therefore, if the succeeding treatment
is proper, it may lead to a correct result. By substituting
F(a) given by (4.6) in the collision intagral.of (4.1),
however, we will meet a great difficulty in the following
‘reatrant: Since Xl and xz are independent variabies, the
domain of the integration with respect to dr2 is to be the
entire configuration spaze; :Fiz and/or G;.ZI are functions

of 2y and Ty and are completely independent of Arl(a) and

Are(a) by (4.9). Therefore, Arl('(‘) -A ra(?) is not a
factor which affects the magnitude or 5;12. Even when
Arl(‘C) -Ara(‘(") is extremely large, yet ?12 ray not

vanish if rl - r2 is small, and vice versa. Hence,
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trere i~ no reason for limiting tne domain o. inte ru.ion
with resnect to dr2 in the direction of o, = D) by
t[DQ-Plt/m that is a function of ' .
3¢ The difficulty mentioned in tne above seems to
have stemmed from the authors' belief that the X's and
t must be always independent variables. This belief is
a rationsl consequence of their assumption that J(N)
given in (2.1) is always symmetric with respect to tne
interchange of coordinates between two similar particles.
Indeed, accord.ng to the assumption, it is vpointless to
say that an individual particle moves alons a continuous
trajectory; there is no such individual particle as
distinguishable from the others by its continuous trajectory.
In spite of th2 technical difficulty mentioned thus far,
it appears that the authors' avarsach is at least persisten’
accordings to their belief thit D(N) is symmetric, but the
situstion is not necessary sz: ATuinst the aut.ors!
expectation, F(a)(xl-qxl(s), X? -axz(s);t) isiven by (4.6)
is no more symmetric as is snown telow, Supoose that we con:i.er
I-‘(‘.)) at Xl =4X1(s) and )(‘2 = A xa(s). Tnen, according to
the svmmetry as=umntion, it must nold tnat
P20 0,05t) = PP (ax,(8)-a %, (), 4 %) (8)-aX,(5);t)
Since AX.)(B) - Axl(s) may increase ae s incresses,
the above ecuition implies that F(Z)(Xl,xegt) is uniform

alonc 8 line given by X1 = -Ka. If we displice the origin

of the coordinate svstem by keepin< the axes as parallel to

34
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those before the displacement, we may realize tnat
F(a) is uniform (invariant) cver the enitire phase space.
This obvious paradox 18 caused by the attempt to represent

a microscopic collision in terms of F(Z) which is assumed

to be s mmetric.

4, Microscopic collisions are conceivable only when

we begin a theory by taking D(N) of a sinzle system as given by

(2.3) which is not symmetric. By taxing X, = X;(s).

we are observing D(N) along the trajectory of particle i.
It is worthwhile to note that there are various solutions
of the partial differential equation (4.8), according

to our choice of functions of s to be assigned to P). P

rl, and rz;

P,y

-

pi(e). ry ri(s)
(4.10)

pé(s). r, ré(s)

In the special case where these functions ziven in the
above satisfy the characteristic equaticns of Eq.(4.3)
which are the very equations of motion given by (3.9),

F(Z) is invariant with respect to s. therwise. F(Z)

is not invariant,
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In view of the above investigation, it appears that Kirkwood and
Ross believed the symmetry of D(N) i, the microscopic sense,
(Another evidence of their belief is found in one* of Kiriiwood's
previous papers also.) This belief, in spite of their reasonable
approach of coarse-graining with respect to time, seems to have
jeopardized their derivation. In general, the same difficulty as
is found in the derivation by Kirkwood and Ross is pointed out
cornmonly in derivations begiuning with the syrumetry assumption
of ™),

4. 2. Derivation by Bogoliubovr

The derivation by Bogoliubov is similar to the derivation by
Kirkwood and Ross. Bogoliubov defined ''streaming operator' which
is of the same implication as that of K(z) given by (4.5). Therefore
the difficulty seen in Bogoliubov's derivation is of the same nature as

that of Kirkwood and Ross,

4.3. Derivation by Gra,d:t

The derivation by Grad is anumolcus in the sense that the
derivation is consistent in spite of the symmetry of D(N) assumed in
the mizruscopic sense. This paradoxical situation is explained in the

following. Grad defined '"truncated distribution functions', e.g., Flo(xl)

*J. Kirkwood, J. Chem. Phys. 14, 180(1946). Particularly the paragraph
beginning in pg. 18l and ending in the next page is of interest from the

present viewpoint. For a system to be investigated, he chooses cne at ﬁesldom
among those systems constituting a canonical ensemble. As a result, D of
the system is statistical from th ' beginning of his theory.

T .

N. N. Bogoliubov, Problems of a Dynamical Theory in Statistical Physics
(1946), translated by jE.G. Gora, in Studies in sStatistical Mechanics, edited
by J. de Boer and G. E. Uhlenbeck(North-Holland Publishing Co. 1962) Vol. 1,

$
H. Grad, Principles of the Kinetic Theory of Gases, in Handbuch der Physik
edited by S. Flugge (Springer-Verlag, Berlin 1958), Vol. XII pp. 205-295.
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is the expectation of finding no molecule within

a distance (J7 of molecule 1, granting that molecule

1l is 15 state Xl. It is also assumed that the sphere of
redius § limits the domain of influence of molecule 1,

OGrad derives the equation o: evolution of ngxl) from

the Liouville equation, instead of th. equation of
evolution of F(l)(xl). This is equivalent to considering
the distribution function 0. molecules as in states of ‘
free flight in the same way as is intended by the Boltzmann
equation“. Also by assuming the existence of the sphere
of influence, the further treatment appears as if a treatment
of collisions among elastic apherical bodies of diameter (T,
instead of collisions by means of force fields. Therefore
the spatial domain o1 the colliaionllntegral with respect
to a fiela particle is always the apace cutside the sphere
of influence of particle 1. 1In this way, Grad could

avoid the cause of the common difficulty, that is the
consideration of trajectories of particles during their
collisions. In order to complete the derivation by

giving the equation obtained above the same implication

as that of the Boltzmann equation, however, it is necessary

to assume the existence of "molecular order" in the behavior

o]
*Fl (Xl) is equivalent to

1 (0) PIV
- F (Xl, t+s) ds

if collisions are rare.




of two particles within the distance 0 . This
assumption is not compatible with the postul :tion
that the symmetry of C(N) and hence the Bogoliubov-
Born-Greer-Kirkword-Yvon hierarchy are valid in
t.e microscoric sense., This condition is out of
the scope o4 Grad's theory. Grad's scheme is
irgeneous in the sense that it has separated itself
from the treatment of collision mechanism wuich is

not compatible with Lthe symmetry assumption of D(N).

V. CONCLUSION

l. The feasibility of the Boltzmann eguation
for neutral molecules has been tested and confirmed
by experiments.
2. The Boltzmann collision integral is derivable
from the Liouville equation only by considering that

(N)

the distribution function D of a system is not

symmetric in the microscopic sense.

3. The microscopic symmetry of D(N), oy which
a particle is indistinguishable from the others, is not

compatible with the Boltzmann collision integral where

a particle is distinguishable during its collision by

38
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its continuous snd ordered trajectory,

4, By accepting the Boltzmann equation as

feasible, we must admit that kinetic theory is to

begin with D™ which is nmot symmetric.
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(A) t
x;'
- /"
xedxl _
X > it
(B) t

Fig. 2.2. In the Boltzmann equation, the effect of a
collision ie an integral over the entire phase of the collision as is shown
in A, On the other hand, the effect of a collision in Eq, (2.8) is accountec
for only at X, between X and X+dX as is shown in B, Reduction of the
Boltamann equation from Eq. (2. 8) is made possible by coarse-graining

Eq. (2.8) with respect to particles and time.
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